ZnO@SnO2 engineered composite photoanodes for dye sensitized solar cells

نویسندگان

  • R. Milan
  • G. S. Selopal
  • M. Epifani
  • M. M. Natile
  • G. Sberveglieri
  • A. Vomiero
  • I. Concina
چکیده

Layered multi-oxide concept was applied for fabrication of photoanodes for dye-sensitized solar cells based on ZnO and SnO2, capitalizing on the beneficial properties of each oxide. The effect of different combinations of ZnO@SnO2 layers was investigated, aimed at exploiting the high carrier mobility provided by the ZnO and the higher stability under UV irradiation pledged by SnO2. Bi-oxide photoanodes performed much better in terms of photoconversion efficiency (PCE) (4.96%) compared to bare SnO2 (1.20%) and ZnO (1.03%). Synergistic cooperation is effective for both open circuit voltage and photocurrent density: enhanced values were indeed recorded for the layered photoanode as compared with bare oxides (Voc enhanced from 0.39 V in case of bare SnO2 to 0.60 V and Jsc improved from 2.58 mA/cm(2) pertaining to single ZnO to 14.8 mA/cm(2)). Improved functional performances of the layered network were ascribable to the optimization of both high chemical capacitance (provided by the SnO2) and low recombination resistance (guaranteed by ZnO) and inhibition of back electron transfer from the SnO2 conduction band to the oxidized species of the electrolyte. Compared with previously reported results, this study testifies how a simple electrode design is powerful in enhancing the functional performances of the final device.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Photoanode Design on the Photoelectrochemical Performance of Dye-Sensitized Solar Cells Based on SnO2 Nanocomposite

Li-doped ZnO (LZO) aggregated nanoparticles are used as an insulating layer in SnO2 nanocomposite (SNC) photoanodes to suppress the recombination process in dye-sensitized solar cells (DSSCs). Various weight percentages of SnO2 nanoparticles (SNPs) and SnO2 nanoflowers (SNFs) were used to prepare SNC photoanodes. The photocurrent-voltage characteristics showed that the incorporation of an LZO i...

متن کامل

The influence of 1D, meso- and crystal structures on charge transport and recombination in solid-state dye-sensitized solar cells

We have prepared single crystalline SnO2 and ZnO nanowires and polycrystalline TiO2 nanotubes (1D networks) as well as nanoparticle-based films (3D networks) from the same materials to be used as photoanodes for solid-state dye-sensitized solar cells. In general, superior photovoltaic performance can be achieved from devices based on 3-dimensional networks, mostly due to their higher short circ...

متن کامل

Fabrication of Microfibre-nanowire Junction Arrays of ZnO/SnO2 Composite by the Carbothermal Evaporation Method

A cotton-like ZnO/SnO2 nanocomposite was grown by the carbothermal evaporation of a mixture of ZnO and SnO2 powders at 1100oC by the vapour-liquidsolid process, in which the Sn particles produced by the reduction of SnO2 act as the catalyst. Field-emission scanning electron microscope images suggest that the composites are made of microfibre-nanowire junction arrays. The structure is formed due...

متن کامل

Fabrication of dye sensitized solar cells with a double layer photoanode

Dye sensitized solar cell was fabricated from a double layer photoanode. First, TiO2 nanoparticles  were synthesized by hydrothermal method. These TiO2 NPs were deposited on FTO glasses by electrophoretic deposition  method in applied voltage of 5 V and EPD time of 2.5-10 min. Then TiO2 hollow spheres (HSs) were synthesized by sacrificed template method with Carbon Spheres as template and TTIP ...

متن کامل

ZnO nanotube based dye-sensitized solar cells.

We introduce high surface area ZnO nanotube photoanodes templated by anodic aluminum oxide for use in dye-sensitized solar cells (DSSCs). Atomic layer deposition is utilized to coat pores conformally, providing a direct path for charge collection over tens of micrometers thickness. Compared to similar ZnO-based devices, ZnO nanotube cells show exceptional photovoltage and fill factors, in addit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015